Integration

Answer all the questions below and press submit to see how many you got right.

id: 18908

Which of the following are true for two functions $f$ and $g?$

  • $\int\limits_{0}^{12}\frac{f(x)}{g(x)}dx=\frac{\int\limits_{0}^{12}f(x)dx}{\int\limits_{0}^{12}g(x)dx}$
    $\int\limits_{0}^{12}f(x)-g(x)dx=\int\limits_{0}^{12}f(x)dx-\int\limits_{0}^{12}g(x)dx$
    $\int\limits_{0}^{12}f(x)\cdot g(x)dx=\int\limits_{0}^{12}f(x)dx \cdot \int\limits_{0}^{12}g(x)dx$
    $\int\limits_{0}^{12}f(x)+g(x)dx=\int\limits_{0}^{12}f(x)dx+\int\limits_{0}^{12}g(x)dx$
id: 18975

$\int\limits_{0}^{5} 4 dx=\lim_\limits{n\to\infty} \frac{5}{n}\sum\limits_{k=1}^{n}4=\lim_\limits{n\to\infty} \frac{5}{n}\cdot n\cdot 4=?$

id: 18942

Which of the following are true for a function $f?$

  • $\int\limits_{0}^{40} f(x)dx-\int\limits_{0}^{15} f(x)dx=\int\limits_{15}^{40}f(x)dx$
    $\int\limits_{0}^{40} f(x)dx-\int\limits_{0}^{15} f(x)dx=\int\limits_{0}^{1}(40-15)f(x)dx$
    $\int\limits_{0}^{15} f(x)dx+\int\limits_{15}^{40} f(x)dx=40\int\limits_{0}^{15}f(x)dx$
    $\int\limits_{0}^{15} f(x)dx+\int\limits_{15}^{40} f(x)dx=\int\limits_{0}^{40}f(x)dx$