Integration

Answer all the questions below and press submit to see how many you got right.

id: 18881

What is $\lim_\limits{n\to\infty} \frac{5}{n}\sum\limits_{k=1}^{n}f(\frac{k\cdot 5}{n})?$

  • $5\int\limits_{0}^{5}f(x)dx$
    $\int\limits_{0}^{5}f(x)dx$
    5
    0
id: 18970

$\int\limits_{0}^{1} 3 dx=\lim_\limits{n\to\infty} \frac{1}{n}\sum\limits_{k=1}^{n}3=\lim_\limits{n\to\infty} \frac{1}{n}\cdot n\cdot 3=?$

id: 18920

Which of the following are true for a function $f$ and a real number $\lambda?$

  • $\int\limits_{0}^{4}\lambda f(x)dx=\lambda\int\limits_{0}^{4}f(x)dx$
    $\int\limits_{0}^{4}\lambda f(x)dx=\int\limits_{0}^{\lambda \cdot4}f(x)dx$
    $\int\limits_{0}^{4} f(x)+\lambda dx=\lambda\cdot 4+\int\limits_{0}^{4}f(x)dx$
    $\int\limits_{0}^{4} f(x)+\lambda dx=\lambda+\int\limits_{0}^{4}f(x)dx$